Feedrate optimization for ball-end milling of sculptured surfaces using fuzzy logic controller

ثبت نشده
چکیده

Optimization of cutting parameters important in precision machining in regards to efficiency and surface integrity of the machined part. Usually productivity and precision in machining is limited by the forces emanating from the cutting process. Due to the inherent varying nature of the workpiece in terms of geometry and material composition, the peak cutting forces vary from point to point during machining process. In order to increase productivity without compromising on machining accuracy, it is important to control these cutting forces. In this paper a fuzzy logic control algorithm is developed that can be applied in the control of peak cutting forces in milling of spherical surfaces using ball end mills. The controller can adaptively vary the feedrate to maintain allowable cutting force on the tool. This control algorithm is implemented in a computer numerical control (CNC) machine. It has been demonstrated that the controller can provide stable machining and improve the performance of the CNC milling process by varying feedrate. Keywords—Ball-end mill, feedrate, fuzzy logic controller, machining optimization, spherical surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Instantaneous Rigid Force Model For 3-Axis Ball-End Milling Of Sculptured Surfaces

An instantaneous rigid force model for prediction of cutting forces in ball-end milling of  sculptured surfaces is presented in this paper. A commercially available geometric engine is used to represent the cutting edge, cutter and updated part geometries. The cutter used in this work is an insert type ball-end mill. Intersecting an inclined plane with the cutter ball nose generates the cutting...

متن کامل

Adaptive controller design for feedrate maximization of machining process

Purpose: An adaptive control system is built which controlling the cutting force and maintaining constant roughness of the surface being milled by digital adaptation of cutting parameters. Design/methodology/approach: The paper discusses the use of combining the methods of neural networks, fuzzy logic and PSO evolutionary strategy (Particle Swarm Optimization) in modeling and adaptively control...

متن کامل

Monitoring and analysis of MRR-based feedrate optimization approach and effects of cutting conditions using acoustic sound pressure level in free-form surface milling

Sculptured surface machining (SSM) is one of the continually used manufacturing processes for die/mold, aerospace(especially turbine blades), precision machine design, bio-medical devices and automotive industries. Developments of machining technologies for quality enhancement of machining results has become a very important fact in current real industry. Off-line feedrate adjusting is a new me...

متن کامل

Tool Path Generation for Milling of Free Form Surfaces With Feedrate Scheduling

The use of freeform (sculptured) surfaces in the product design process is accelerating at an exponential rate driven by functional as well as esthetics demands. CAD/CAM software is a must in their design and manufacture. While the geometric aspects of the design are relatively wellcovered, issues still remain when it comes to the actual manufacture of freeform surfaces. The major issues are re...

متن کامل

Fuzzy PD Cascade Controller Design for Ball and Beam System Based on an Improved ARO Technique

The ball and beam system is one of the most popular laboratory setups for control education. In this paper, we design a fuzzy PD cascade controller for a ball and beam system using Asexual Reproduction Optimization (ARO) technique. The ball & beam system consists of a servo motor, a grooved beam, and a rolling ball. This system utilizes a servo motor to control ball’s position on the beam. Chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012